littletable - a Python module to give ORM-like access to a collection of objects
- Introduction
- Optional dependencies
- Importing data from CSV files
- Tabular output
- For More Info
- Sample Demo
Introduction
The littletable
module provides a low-overhead, schema-less, in-memory database access to a collection
of user objects. littletable
Tables will accept Python dict
s or any user-defined object type, including:
namedtuples
andtyping.NamedTuples
dataclasses
types.SimpleNamespaces
attrs
classesPyDantic
data modelstraitlets
littletable
infers the Table’s “columns” from those objects’ __dict__
, __slots__
, or _fields
mappings to access
object attributes.
If populated with Python dict
s, they get stored as SimpleNamespace
s.
In addition to basic ORM-style insert/remove/query/delete access to the contents of a Table
, littletable
offers:
- simple indexing for improved retrieval performance, and optional enforcing key uniqueness
- access to objects using indexed attributes
- direct import/export to CSV, TSV, JSON, and Excel .xlsx files
- clean tabular output for data presentation
- simplified joins using
"+"
operator syntax between annotatedTable
s - the result of any query or join is a new first-class
littletable
Table
- simple full-text search against multi-word text attributes
- access like a standard Python list to the records in a
Table
, including indexing/slicing,iter
,zip
,len
,groupby
, etc. - access like a standard Python
dict
to attributes with a unique index, or like a standard Pythondefaultdict(list)
to attributes with a non-unique index
littletable
Table
s do not require an upfront schema definition, but simply work off of the attributes in
the stored values, and those referenced in any query parameters.
Optional dependencies
The base littletable
code has no dependencies outside of the Python stdlib. However, some operations
require additional package installs:
operation | additional install required |
---|---|
Table.present |
rich |
Table.excel_import/export |
openpyxl (plus defusedxml or lxml , defusedxml recommended) |
Table.as_dataframe |
pandas |
Importing data from CSV files
You can easily import a CSV file into a Table
using Table.csv_import()
:
import littletable as lt
t = lt.Table().csv_import("my_data.csv")
# or
t = lt.csv_import("my_data.csv")
In place of a local file name, you can also specify an HTTP url:
url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv"
names = ["sepal-length", "sepal-width", "petal-length", "petal-width", "class"]
iris_table = Table('iris').csv_import(url, fieldnames=names)
You can also directly import CSV data as a string:
catalog = Table("catalog")
catalog_data = """\
sku,description,unitofmeas,unitprice
BRDSD-001,Bird seed,LB,3
BBS-001,Steel BB's,LB,5
MGNT-001,Magnet,EA,8"""
catalog.csv_import(catalog_data, transforms={'unitprice': int})
Data can also be directly imported from compressed .zip, .gz, and .xz files.
Files containing JSON-formatted records can be similarly imported using json_import()
.
Tabular output
To produce a nice tabular output for a table, you can use the embedded support for
the rich module, as_html()
in Jupyter Notebook,
or the tabulate module:
Using table.present()
(implemented using rich
; present()
accepts rich
Table
keyword args):
table(title_str).present(fields=["col1", "col2", "col3"])
or
table.select("col1 col2 col3")(title_str).present(caption="caption text",
caption_justify="right")
Using Jupyter Notebook
:
from IPython.display import HTML, display
display(HTML(table.as_html()))
Using tabulate
:
from tabulate import tabulate
print(tabulate((vars(rec) for rec in table), headers="keys"))
For More Info
Extended “getting started” notes at how_to_use_littletable.md.
Sample Demo
Here is a simple littletable
data storage/retrieval example:
from littletable import Table
customers = Table('customers')
customers.create_index("id", unique=True)
customers.csv_import("""\
id,name
0010,George Jetson
0020,Wile E. Coyote
0030,Jonny Quest
""")
catalog = Table('catalog')
catalog.create_index("sku", unique=True)
catalog.insert({"sku": "ANVIL-001", "descr": "1000lb anvil", "unitofmeas": "EA","unitprice": 100})
catalog.insert({"sku": "BRDSD-001", "descr": "Bird seed", "unitofmeas": "LB","unitprice": 3})
catalog.insert({"sku": "MAGNT-001", "descr": "Magnet", "unitofmeas": "EA","unitprice": 8})
catalog.insert({"sku": "MAGLS-001", "descr": "Magnifying glass", "unitofmeas": "EA","unitprice": 12})
wishitems = Table('wishitems')
wishitems.create_index("custid")
wishitems.create_index("sku")
# easy to import CSV data from a string or file
wishitems.csv_import("""\
custid,sku
0020,ANVIL-001
0020,BRDSD-001
0020,MAGNT-001
0030,MAGNT-001
0030,MAGLS-001
""")
# print a particular customer name
# (unique indexes will return a single item; non-unique
# indexes will return a new Table of all matching items)
print(customers.by.id["0030"].name)
# see all customer names
for name in customers.all.name:
print(name)
# print all items sold by the pound
for item in catalog.where(unitofmeas="LB"):
print(item.sku, item.descr)
# print all items that cost more than 10
for item in catalog.where(lambda o: o.unitprice > 10):
print(item.sku, item.descr, item.unitprice)
# join tables to create queryable wishlists collection
wishlists = customers.join_on("id") + wishitems.join_on("custid") + catalog.join_on("sku")
# print all wishlist items with price > 10 (can use Table.gt comparator instead of lambda)
bigticketitems = wishlists().where(unitprice=Table.gt(10))
for item in bigticketitems:
print(item)
# list all wishlist items in descending order by price
for item in wishlists().sort("unitprice desc"):
print(item)
# print output as a nicely-formatted table
wishlists().sort("unitprice desc")("Wishlists").present()
# print output as an HTML table
print(wishlists().sort("unitprice desc")("Wishlists").as_html())
# print output as a Markdown table
print(wishlists().sort("unitprice desc")("Wishlists").as_markdown())